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Abstract

Characteristic polynomials of one side arithmetically weighted adjacency matri-
ces of linear chains were calculated. The elements of the inverse of their matrix are
derived from odd factorials.
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Diudea [1,2] introduced asymmetrically weighted distance matrices, Cluj matri-
ces, by the Wiener weights Ni,(i,j) and Nj,(i,j) (the number of vertices on the end j
of the path pij from the diagonal vertex (i = j) to the off-diagonal vertex j (i 6= j). I
have studied [3] some properties of the direct (Hadamard) product of a Cluj matrix
with the corresponding adjacency matrix A:

Ce = Cp •A (1)

which leaves only adjacent elements of the Cluj matrix Ce (or equivalently Cluj
weighted adjacency matrix AC , for example for the linear chain L4 (n-butane)

0 1 0 0
3 0 2 0
0 2 0 3
0 0 1 0


The eigenvalues of the linear chains Ln with odd n (from the inspection of the

first chains) have values 0, [2, 4, . . . (n−1)], the eigenvalues of the linear chains Ln

with even n have values [1, 3, . . . (n− 1)].
In this paper, the characteristic polynomials of one side arithmetically weighted

adjacency matrices of linear chains are studied
0 1 0 0
1 0 1 0
0 2 0 1
0 0 3 0


The characteristic polynomials were calculated by counting weighted k-tuples.

The results are tabulated:



Table 1: Coefficients of weighted linear chains adjacency matrices

n
1 1
2 1 -1
3 1 -3
4 1 -6 3
5 1 -10 15
6 1 -15 45 -15
7 1 -21 105 -105

The coefficients of the table are ti,1 = 1, ti,j = (n− j + 1)ti−1,j−1 + ti−1,j . These
coefficients can be tabulated in following matrix according to the powers of x terms

1 0 0 0 0 0 0
-1 1 0 0 0 0 0
0 -3 1 0 0 0 0
0 3 -6 1 0 0 0
0 0 15 -10 1 0 0
0 0 -15 45 -15 1 0
0 0 0 -105 105 -21 1

The inverse of this matrix is

1 2 3 4 5 6 7
∑

1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 2
3 3 1 0 0 0 0 5
15 15 6 1 0 0 0 37
105 105 45 10 1 0 0 266
945 945 420 105 15 1 0 2431

10395 10395 0 105 105 21 1 27007

The elements of the first column are the odd factorials 1x1x3x5x7 . . . (the first
1 is 0!).

The recurrence of the matrix elements is m1,1 = 1, otherwise

[2(n− 1)− j]mi−1,j + mi−1,j−1 (2)

The row sums S, except the first two, are obtained as

(2n− 1)Sn−1 + Sn−2 (3)

The characteristic polynomials of odd and even chains differ. It were better to
include empty side diagonals and the epty graph. The reccurence is then:



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
-1 0 1 0 0 0 0 0
0 -3 0 1 0 0 0 0
3 0 -6 0 1 0 0 0
0 15 0 -10 0 1 0 0

-15 0 45 0 -15 0 1 0
0 -105 0 105 0 -21 0 1

The inverse of this matrix has the same elements but they are all positive:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 3 0 1 0 0 0 0
3 0 6 0 1 0 0 0
0 15 0 10 0 1 0 0
15 0 45 0 15 0 1 0
0 105 0 105 0 21 0 1

The recurrence of the matrix elements is m1,1 = 1, otherwise

(n− 1]mi−2,j + mi−1,j−1 (4)

The row sums S, except the first two, are obtained as

(n− 1)Sn−2 + Sn−1 (5)
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