Distributions of Distances in Information Strings

Milan Kunz,
Jurkovičova 13, 63800 Brno, Czech Republic
Zdeněk Rádl,
Rennenská 2, 60200 Brno, Czech Republic
(Received

Distances between identical symbols in information strings (biological, language, computer programs (*.exe files) are described with a different precision with four distributions: Exponential, Weibull, lognormal and negative binomial. The correlations are sometimes highly significant.

1 INTRODUCTION

Statistical properties of information distributions, especially their extreme skewness, raised the notion of their specificity ${ }^{1-4}$. Determining frequencies of symbols or words was a time consuming task suitable for shortening unbearably long time periods ${ }^{5}$. These linguistic studies had some pragmatical value, too: Learning of languages starting with the most frequent words and phrases and attribution of texts to authors.

The inverse function to frequencies (or adjacencies) are distances between identical counted objects. The distance function, the Wiener index ${ }^{6}$ gained a significant role in the mathematical chemistry ${ }^{7}$.

Distances between identical symbols exist in all information strings with any number of symbols or their k-tuples (words). Their manual counting was even more troublesome than counting words. Therefore such studies were made only for neighbor symbols where the local transitivity (frequencies of 2-tuples, e. g. ab) was studied by Harary and Paper ${ }^{8}$. Time intervals between consecutive patent applications of patentees ${ }^{9}$, and time intervals between consecutive publications ${ }^{10}$ were determined for some small samples. Visits in a library were
analyzed by Fourier spectral analysis ${ }^{11}$.
Another situation exists in studies of DNA fragments and proteins. The geometrical distances between individual nucleotides, codons and aminoacids were investigated very thoroughly, since gaining information from the biological material is a laborious task, whereas an additional evaluation is comparatively cheap. The long-range statistical properties of nucleic acid sequences were investigated as planar trajectories ${ }^{12}$ or by using point geometry analysis ${ }^{13}$. Even the methods of linguistics were applied ${ }^{14}$. The biological DNA strings were e. g. decomposed as texts into syllables, words or group of words ${ }^{15}$.

A stochastical generation of a string of m repeatings of an alphabet of n symbols is conventionally modelled by tossing a dice with n-sides.

A coin is the first nontrivial model of the dice with two sides. When a coin is tossed, there appear differently long sequences, when one result prevails. The distribution of sequences between successive events (head or tail) in all possible runs is known as the negative binomial distribution. The negative binomial distribution is the inverse to the binomial distribution. It evaluates frequencies of distances between consecutive binary symbols in their all strings.

This distribution was a statistical curiosity till some decades ago since its evaluation was a rather difficult task ${ }^{16,17}$, because its distribution function does not exist in a closed form. Now it is included in standard statistical software program packages ${ }^{18}$.

The distances between counted symbols in a string can be transformed to distances $d_{i j}$ in graphs. To use graph notions, familiar for representing molecules, a string of symbols can be treated in two ways: As a star with multiple m_{j} indexed arcs leading from one added root to n individual symbols forming n leaves of the star, or as a forest of n stars, each token being a leaf of the star. There must be added n individual roots for all symbols. Both models have different combinatorial properties ${ }^{19}$, forests of n stars having more elements of symmetry.

A coded string of the four nucleotide bases (a gene fragment FRAXGE 52 seq, beginning ${ }^{20}$ is used as the example) has the form:

GAATTCAGGT AAGCTATCTT GAAAGGGGAA ATATCAAAAG
CTAGAGATCA GAGTAAGGCT GAGACTCAGA GTCAAGTGGG
GAAGACTAAG TTGCAGTATG TACTGGCAGT GAAGATAAGT...
The bases are written conventionally in the groups of ten symbols. We can ask if such a string is a result of tossing a tetrahedron (maybe biased, since the frequencies of all nucleotide bases are not equal).

When this string of four bases is transformed into the string of 643 -tuples, known as codons (each codon was replaced by an arbitrary ASCII symbol, for example $=$ stands for TTC, B for TCA, other symbols are given in the Table 2), a part of the string looks so:
$=$ RBiPkpPXyIKw? G
$@_{v} Y=D L y w g Y N Y A Q E Z m S[F$
$=¿ g U O U Y Q Q q q I j Y i k I a r T R y=j P m A M V f^{\wedge}{ }^{i} w_{¿}{ }_{¿}$ LpaWUJ
DkUBz^VVJ
${ }^{\wedge} \mathrm{jG}$
G
fd^ABF
The transcription is a quite unintelligible text as if a secret code were used. Each symbol in this string correspons to an aminoacid, except the ending symbols (G, F, J) in the rows of the transcription. These are three cistronic codons which divide the sequences of aminoacids as blanks divide words and paragraphs.

The biological strings can be compared with e.g. this text or with an computer program in the form of an exe file (APPEND.EXE DOS 6.22, an arbitrary fragment, hexadecimal coding is used to facilite printing, compare with the original in our PC):

00000000000000000000000000000000
009700B1FF000000005B5D7C3C3E2B3D

3B2200AE000000BC0000000000004EA00

D400F70004010000000001CA0004EA00
D400F700040100012001004401D30000.
The first question is if these three different strings have some common statistical properties, even if we know that biological, language, and computer information strings are programs which are processed differently.

A gene is a biological information string which is processed by the cell for the development of the qualities which have been passed on from its parents. We are attempting to understand all details of this process.

A text is an information string which is processed by the reader. We know from the our experience what a reader does but we do not know yet in detail how our brain works.

A computer program is processed by the computer according to an built-in algorithm. The computers were constructed by people. Thus all details are understandable, at least for experts.

We see immediately that the exe file contains a long sequence of the same symbol 0 . This feature can be compared to blank spaces in the printed texts (empty rows or their ends), or to the CGG repeat in the gene ${ }^{20}$ FMR-1. Such a sequence has the analogical function as the graphics and punctuation marks have for reading, they form breakpoints, and they divide significant parts of the file and give time for processing them. The sequences of aminoacids between the cistronic codons have lengths which can be compared with single words, divided in texts by single blank spaces, or with whole sentences, divided by points.

We know from our own experience that we do not control distances between symbols when we write something, except in verses ending with rhymes, and avoiding repeating of words. Thus the distances appear in our texts quite spontaneously. Similarly, computer programs are formed.

Fifty years ago the axiomatic theory of communication was published ${ }^{21}$ which had a profound effect on the basic concepts of thermodynamics as related
to quantum mechanics and statistical approaches. The bridging between the classical thermodynamics and the information theory has not yet happened ${ }^{22}$. For finding the common roots, new ideas and new comparative data are necessary.

2 EXPERIMENTAL

The information strings in ASCII form were at first indexed with the position index i (i going from 1 to m) of each individual symbol in the string, and then the differences these d_{j} position indexes were determined. The differences are the topological distances between the same symbols. The sets of these values were evaluated by the commercial program (STATGRAPHICS ${ }^{18}$, Vers. 4.0) using different statistical tests. From all available tested distributions, only four distributions gave significant results, the exponential distribution, the Weibull distribution, the lognormal distribution, and the negative binomial distribution. The actual values (mean, standard deviation, skewness, kurtosis, distribution parameters etc.) are of little interest in this preliminary report, since they differ between similar tested files considerably. Evaluation of other parallel samples has shown to big variance of results. Therefore the results are presented in the form of the significance of the χ^{2} tests (Tables $1-3$) to show the general behavior of the distance distribution.

The differences between experimental and calculated values were usually great at the shortest distances (1 till 10), therefore the range was always adjusted to 0 . Adjusting the lowest possible value to greater distances by pooling these distances increased the significance of the χ^{2} tests in some cases. The significance improved dramatically sometimes, but if the lumping continued too long, the significance could decrease again, as the number of freedom degrees became too low for the test.

Starting with texts (Table 1). The lower and upper case letters were counted together, except the vowels. The distributions of distances between the vowels
are highly irregular, but the upper case vowels are dispersed more regularly, at least A and I in the given example. The frequency of other upper case vowels was too low to give the sufficient number of freedom degrees for the χ^{2} test.

Some distributions of distances between consonants are highly regular, especially their tails, if the low distances inside words are pooled. They are described with a different precision with four distributions: exponential, Weibull, lognormal and negative binomial. Sometimes it is rather difficult to decide which distribution is the best one for fitting. Three distributions are closer: Exponential, Weibull, and negative binomial. The lognormal distribution appears at other letters as the best one.

A similar picture is obtained with codons in the FRAXCDNA seq fragment (Table 2). Here some highly regular distributions of codons give irregular distributions of aminoacids. These distributions are polymodal, some distances are significantly lower or higher than expected. There appear structures suggesting of impact craters, two peaks divided by one value lower than expected.

This property of this string can be compared with long lists of chemical names of derivatives, when the basic parts with their distinct letters repeat at the end of each name. And this can explain the irregularities of the vowels. The vowels are in all kind of words, as auxiliary and key words are, and these distributions are mixed together as codons in aminoacids.

The numerals from the exe file with the hexadecimal coding correspond to the nucleotide bases in the DNA. There appeared one outlier distance over 1000 at all numerals. This was produced by one long string of the numeral 0 which together with the property of the hexadecimal code having zero in many 2 tuples gave an unexpected high relative frequency 0,3998 of the distance 1 of this numeral. The eventual deletion of this long string improved somewhat the correlations. The odd frequencies of the numeral 0 are significantly lower than even ones due to the use of the zero in the 2-tuple hexadecimal code.

The shorter CGG repeat coincident with a breakpoint cluster region ${ }^{23}$ in
the FRAXGE 52, corresponding to this string of the numeral 0 gave the high value of the corresponding χ^{2} test, too. Thus such a feature can be detected by a statistical analysis of the distance distribution.

3 DISCUSSION

To understand the results, we at first construct the limiting cases of possible strings, comparing them with physical bodies, a crystal and an unmixed blend of substances. The analogy is obscured by the different dimensionalities of physical bodies and information strings, respectively by the size of the given examples.

A three dimensional crystal has the distances uniformly distributed in its axes. A two dimensional section could be compared with a page of 24 repeats of ACGT, where all distances between the equal symbols are 4:

ACGTACGTACGTACGTACGTACGT

CGTACGTACGTACGTACGTACGTA
GTACGTACGTACGTACGTACGTAC
TACGTACGTACGTACGTACGTACG.
The distribution of distances is monotone, the standard deviation is zero.
An unmixed blend of substances could be compared with the string, where equal symbols are together in one place, all distances between them are 1, except the distances of the last symbol in the group to the first symbol in the following group and the distances from the beginning. These distances are different but they can be made equal by by cycling the string:

AAAAAACCCCCGGGGGGTTTTTT
AAAAAACCCCCGGGGGGTTTTTT
AAAAAACCCCCGGGGGGTTTTTT
AAAAAACCCCCGGGGGGTTTTTT.
The distribution of distances is highly skewed, the standard deviation is maximal, if all equal symbols are lumped into one group.

This distribution can be compared with the position of types in the printer's
case before the typographer forms meaningfull strings. His work changes the position of symbols. This is equivalent with the mixing. Since the frequency of symbols is not changed by setting, the process is changing the symmetry of the string.

The visual inspection shows, that the strings studied are not in these limiting states. As the tabulated results show, the distributions of distances between some identical symbols in the information strings can be fitted well by distributions of the probability theory, especially their tails, when the shortest distances are lumped. The distributions of distances are described with a different precision with four skewed distributions ${ }^{24}$: Exponential, Weibull, lognormal and negative binomial. The true form of the distribution lies between them.

The exponential distribution has only one adjustable parameter. The lognormal, the negative binomial, and the Weibull distributions have two adjustable parameters. For finding the best form of the distribution, it could be better to use a more parametrical distribution, maybe the three parametrical distribution which was proposed for the distributions of molecular weights of polymers by Kubín ${ }^{25,26}$ could be suitable.

The negative binomial distribution appears spontaneously as their mean in long runs of tossing coins. The individual results do not depend on previous ones. This is a genuine stochastic process. In the information theory flipping coin is known as white noise.

The three other distributions which gave significant fits with the behaviour of distances between some symbols, exponential, Weibull, and lognormal, demand other relations between symbols, but they can be considered to be stochastic, too. Any deviations from these distributions show that either a rare event occured accidentally with a low expectation, or some efforts or forces effecting distances shaped the string, showing that the formation of the string was not a simple stochastic process. For example the unmixed zeroes in the exe file and some regularities in the other two strings.

Thus it is interesting that the highest χ^{2} values were observed at groups of codons which are common to one aminoacid. These codons, corresponding to synonyms, appear in the string quite randomly, with the highly significant χ^{2} tests but the corresponding aminoacids have the unsignificant chisquare tests.

The lower significance of the χ^{2} test at the aminoacids coded by more codons is due to the modality of their distributions. There appears peaks, valleys and craters. This phenomenon can, maybe, explain the lower significance of the χ^{2} tests of the codons corresponding to only one aminoacid and of the vowels. They must be used as necessary for the given purpose.

This obvious interpretation of the results has one fault: It needs an explanation, why this difference exists, why the codons are used differently, why they do not simply copy the distributions of their common aminoacids? It looks like some rules of a good style existed for the DNA design.

It can be concluded that the preliminary analysis of distances in information strings gave some interesting results. Their importance can be evaluated only after obtaining and comparing more data. The results with with other English samples and the Czech language were analogical to the given example. There was observed Unfortunately, the STATGRAPHICS program was not suitable for evaluating longer sequences and it will be necessary to elaborate techniques for comparing parallel results.

There appeared one unsolved problem connected with the entropy. The information entropy is calculated from frequencies of symbols and does not depend on their positions, there is no measure for the effect of mixing on the calculated value. Since the mixing in thermodynamics is an spontaneously going process, the entropy is growing by mixing.

4 REFERENCES

1. Haitun, S. D. Stationary Scientometric Distributions I: Different Approximations. Scientometrics, 1982, 4, 525.
2. Haitun, S. D. Stationary Scientometric Distributions II: Non Gaussian Nature of Scientific Activities. Scientometrics, 1982, 4, 89-101.
3. Haitun, S. D. Stationary Scientometric Distributions III: The Role of the Zipf Distribution. Scientometrics, 1982, 5, 375-395.
4. Kunz, M. Plots against Information Laws, Science and Science of Science, 1995, 3 (1-2), 91 - 97.
5. Yule, G. U. The Statistical Study of Literary Vocabulary, Cambridge University Press, Cambridge, 1944.
6. Wiener, H. Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc, 69, 17, 1949.
7. Mihalić, Z.; Veljan, D.; Amić, D.; Nikolić, S.; Plavsić, D.; Trinajstić, N. The distance matrix in chemistry, J. Math. Chem., 1992, 11, $223-258$.
8. Harary, F.; Paper, H. H. Toward a General Calculus of Phonemic Distribution, Language, 1957, 33, 143 - 169.
9. Kunz, M. Time Spectra of Patent Information, Scientometrics, 1987, 11, 163-173.
10. Kunz, M. About metrics of bibliometrics, J. Chem. Inform. Comput. Sci., 1993, 33193 - 196.
11. McGrath, W. E. Periodicity in Academic Library Circulation, a Spectral Analysis, in Kretschmer, H. Ed. Fourth International Conference on Bibliometrics, Informetrics and Scientometrics, September 11-15,1993, Berlin, Book of Abstracts, Part I.
12. Ninio, J.; Mizraji, E. Perceptible Features in Graphical Representations of Nucleic Acid Sequences, Visualizing Biol. Inf.; Pickover, C. A. Ed.; Word Scientific, Singapore,1995, 33-42.
13. Huen, Y. K. Representation of Biological Sequences Using Point Geometry Analysis, Visualizing Biol. Inf.; Pickover, C. A. Ed.; Word Scientific, Singapore, 1995, 165 - 182.
14. Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna,
R. N.; Peng, C-K.; Simons, M. NATO ASI Ser., Ser. E, 1996, 322 (Physics of Biomaterials: Fluctuations, Selfassembly and Evolution) 219 - 234.
15. Schmitt, A. O.; Ebeling, W.; Herzel, H. The Modular Structure of Informational Sequences, Biosystems, 1996, 37, 199 - 210.
16. Irwing, J. O. The Place of Mathematics in Medical and Biological Statistics, J. Royal. Statistical Soc. A 1963, 126, 1 - 45.
17. Schilling, M. F. Long Run Predictions, Math. Horizon., Spring1994, 10 -12 .
18. STATGRAPHICS, Statistical Graphics Corporation.
19. Kunz, M. Entropies and Information Indices of Star Forests, Coll. Czech. Chem. Commun., 1986, 51, 1856 - 1863.
20. Verkerk, A. J. M. H.; Pieretti M.; Sutcliffe, J. S.; Fu, Y-H.; Kuhl, D. P. A.; Pizzuti, A.; Reiner, O.; Richards S.; Victoria, M.F.; Zhang, F. Identification of a Gene (FMR-1) Containing a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile X Syndrome, Cell, 1991, 65, 905 - 914.
21. Shannon, C. E. The Mathematical Theory of Communication, Bell System Technical Journal, 1948, 27, 379, 623.
22. Tribus, M. Information and Thermodynamics: Bridging the Two Cultures, 1986, 11, 347 - 359.
23. Exner, O.; Kunz, M. Citation histories of related papers in the field of chemical correlation analysis, Scientometrics, 1995, 32, 3-10.
24. Verkerk, A. J. M. H.; de Graaff, E.; De Boulle, K.; Eichler, E. E.; Konecki, D. S.; Reyniers, E.; Mance, A.; Poustka, A.; Willems, P. J.; Nelson, D. L.; Oostra, B.A. Alternative Splicing in Fragile X Gene FMR-1, Human Mol. Gen., 1993, 2, 399 - 404.
25. Hastings, N. A. J.; Peacock, J. B. Statistical Distributions, Butterworths, London, 1975.
26. Kubín M. A Generalized Exponential Function as a Model of Polymer

Distribution Curves, Coll. Czech. Chem. Commun., 1967, 32, 1505-1517.
27. Kubín M. A Generalized Exponential Function as a Model Distribution Curves of Polymers. II. Determination of Parameters by Means of Number, Weight and z-Averages, Coll. Czech. Chem. Commun., 1969, 34, 703 - 707.

Table 1: Types of distributions of distances between letters in the paper ${ }^{23}$

Letter	Frequency	Range	E. Significance			W.

Notes: - the program did not made the test, insufficient degrees of freedom

Table 2: Types of distributions of distances between consecutive codons and aminoacids in FRAXCDNA ${ }^{24}$

Aminoacid Codone	F.	Range	Significance of the χ^{2} test				Note
TTT: ; Phe	184	1-458	0.000	0.238	0.092	0.000	
TTC: $=$ Phe	92	1-708	0.109	0.255	0.055	0.118	
Phenylalanine	276	1-458	0.000	0.551	0.159	0.000	
TCT: ' Ser	125	1-303	0.623	0.615	0.018	0.623	
TCC: A Ser	114	1-258	0.623	0.622	0.006	0.657	
TCA: B Ser	100	2-367	0.581	0.877	0.084	0.039	
TCG: C Ser	35	3-853	0.935	0.428	0.469	0.029	
AGT: h Ser	85	2-526	0.025	0.021	0.008	0.001	
AGC: i Ser	115	1-286	0.273	0.170	0.273	0.271	1
Serine	574	1-97	0.089	0.220	0.000	0.131	
TAT: D Tyr	65	2-568	0.105	0.071	0.043	0.000	1
TAC: E Tyr	62	2-555	0.257	0.324	0.026	0.164	p
Tyrosine	127	1-330	0.090	0.061	0.002	0.106	
TAA: F ochre	78	1-545	0.229	0.069	0.069	0.254	
TAG: G amber	77	1-417	0.192	0.132	0.007	0.254	p
TGT: H Cys	105	1-294	0.978	0.951	0.144	0.977	
TGC: I Cys	110	1-415	0.104	0.184	0.054	0.088	p
Cysteine	215	1-150	0.929	0.936	0.034	0.854	
TGA: J opal	133	3-347	0.708	0.289	0.084	0.000	
TGG: K Try	152	1-279	0.937	0.991	0.299	0.912	
TTA: \& Leu	81	1-611	0.797	0.925	0.187	0.640	
TTG: ? Leu	125	1-284	0.813	0.609	0.432	0.712	

Letter	Frequency	Range	E. W. L. N. N. B. Significance of the χ^{2} test				Note
CTT: L Leu	124	1-324	0.343	0.233	0.002	0.341	1
CTC: M Leu	155	1-347	0.389	0.666	0.015	0.282	
CTA: N Leu	88	1-381	0.771	0.815	0.009	0.764	
CTG: O Leu	163	1-344	0.227	0.255	0.268	0.144	
Leucine	736	1-63	0.000	0.000	0.000	0.000	
CCT: P Pro	160	1-213	0.644	0.497	0.035	0.634	p
CCC: Q Pro	133	1-439	0.247	0.842	0.247	0.664	
CCA: R Pro	161	1-292	0.263	0.140	0.000	0.369	c
CCG: S Pro	57	2-569	0.437	0.602	0.109	0.000	
Proline	511	1-87	0.000	0.000	0.000	0.002	
CAT: T His	107	1-263	0.568	0.586	0.138	0.450	1
CAC: U His	116	1-442	0.140	0.647	0.010	0.136	
Histidine	223	1-150	0.602	0.538	0.006	0.382	
CAA: V Gln	112	1-301	0.434	0.432	0.126	0.395	p
CAG: W Gln	166	1-242	0.213	0.103	0.002	0.177	p
Glutamine	278	1-150	0.602	0.538	0.006	0.382	
CGT: X Arg	41	1-667	0.615	0.829	0.565	0.596	
CGC: Y Arg	39	1-632	0.104	0.184	0.054	0.099	p
CGA: Z Arg	36	8-738	0.823	0.631	0.304	0.000	
CGG: Ä Arg	54	1-552	0.761	0.854	0.026	0.730	
AGA: j Arg	132	2-213	0.517	0.367	0.001	0.000	
AGG: k Arg	184	1-188	0.247	0.182	0.001	0.233	
Arginine	486	1-92	0.072	0.042	0.000	0.073	
ATT: Ö Ile	93	2-421	0.002	0.001	0.000	0.000	p
ATC: Ü Ile	91	1-357	0.238	0.198	0.043	0.239	
ATA: ^ Ile	80	1-724	0.023	0.445	0.426	0.023	1
Ileucine	264	1-199	0.004	0.007	0.031	0.032	
ATG: _ Met	68	1-487	0.443	0.293	0.129	0.444	
ACT: ' Thr	102	1-246	0.863	0.574	0.038	0.899	
ACC: a Thr	102	3-459	0.774	0.587	0.116	0.000	p
ACA: b Thr	101	1-241	0.885	0.826	0.226	0.868	
ACG: c Thr	33	1-988	0.355	0.178	0.032	0.370	
Threonine	338	1-129	0.284	0.286	0.001	0.103	
AAT: d Asn	108	1-345	0.277	0.205	0.007	0.278	c
AAC: e Asn	78	1-456	0.001	0.001	0.013	0.001	p, l
Asparagine	186	1-250	0.948	0.942	0.048	0.759	
AAA: f Lys	257	1-282	0.000	0.001	0.000	0.000	l, p
AAG: g Lys	109	1-338	0.012	0.168	0.004	0.012	1, p

Notes:
E. - exponential distribution
W. - Weibull distribution
L. N. - lognormal distribution
N. B. - negative binomial distribution
$\mathrm{p}=$ peak - single higher count representing about one half of the χ^{2} value
$\mathrm{l}=$ low - single lower count representing about one half of the χ^{2} value
$\mathrm{c}=$ crater - the lower count with neighbour counts higher than expected

Table 3: Types of distributions of distances between the numerals letters in the exe file APPEND.EXE from DOS 6.22

Numeral	Frequency	Range	E. W. L.N N. B. Significance of the χ^{2} test			
1	1049	1-974	0.174	0,116	0.002	0.199
2	1705	1-1005	0.000	-	0.000	0.000
3	1317	1-1017	0.058	0,000	0.000	0.093
4	1294	1-1054	0.032	-	0.005	0.000
5	1113	1-1040	0.000	0,007	0.073	0.000
6	1355	1-1167	0.000	-	0.026	-
7	1263	1-1028	0.000	-	0.131	0.000
8	1342	1-1143	0.000	-	- *	0.000
9	554	1-1027	0.009	0,020	0,076	0.010
0	4966	1-40	-	-	-	-

Notes: - the program did not made the test, insufficient degrees of freedom

* when the extremal value 1143 was excluded, the significance of the χ^{2} test was 0.254

